令和元年度 第2回 札幌市 地震被害想定検討委員会

資料 2-3:地震動予測の検証 (巻末資料)

令和元年12月19日

札幌市危機管理対策室

巻末資料

番号	タイトル	内容	頁
巻末①	1.1 震源モデル〜重要度の検討(検討モデル の選定)	【③内陸型(伏在活断層)に関する新たな知見の 確認】~伏在活断層との位置関係	3
巻末2	1.1 震源モデル〜重要度の検討(検討モデル の選定)	【現行想定以降の着目すべき地震履歴】	4,5
巻末③	1.1 震源モデル~諸元設定	【参考:内陸型(伏在活断層)の震源断層パラ メーター】	6
巻末④	1.2 地盤構造モデル~深部地盤モデル	【深部地盤モデルの比較】	7,8,9
巻末5	1.2 地盤構造モデル〜胆振東部地震の揺れ 方との照合	【胆振東部地震の地震動の特徴】	10,11, 12
巻末⑥	1.3 強震動計算~計算手法	【深部地盤の計算手法(ハイブリッド合成法)の 補足説明】	13
巻末⑦	1.4 液状化予測の手法等~液状化に関わる地 下水の考え方	【現行想定の地下水位設定手法】	14
巻末⑧	1.4 液状化予測の手法等~液状化に関わる地 下水の考え方	【参考:地下水位の傾向】	15

巻末① 1.1 震源モデル~重要度の検討(検討モデルの選定)

【③内陸型(伏在活断層)に関する新たな知見の確認】~伏在活断層との位置関係(複数アングル)

参末② 1.1 震源モデル〜重要度の検討(検討モデルの選定) 【現行想定以降の着目すべき地震履歴】〜震源位置

巻末③1.1 震源モデル~諸元設定

【参考:内陸型(伏在活断層)の震源断層パラメーター】

■巨視的パラメーター (断層の全体像を表現するパラメーター)

	伏在活断層			西札幌	月寒	野幌
	断層総面積	S	[km^2]	256	560	704
	地震モーメント	MO	[Nm]	3.89E+18	1. 74E+19	2. 76E+19
	地震規模	Mw		6.33	6. 76	6.89
	気象庁マグニチュード	Mjma		6. 7	7.3	7.5
E	総短周期レベル	Α	[Nm/s^2]	8. 33E+18	1. 37E+19	1. 60E+19
視的パラメータ	断層数(セグメント数)					1
	セグメントNo.					1
	走向	strike	[°]	0	10	0
	傾斜角	dip	[°]	45	45	45
I	平均すべり量	D	[cm]	47. 48	97.34	122. 37
	断層面の長さ	L	[km]	16	28	32
	断層面の幅	W	[km]	16	20	22
	断層上端深さ	d	[km]	5	6	6
	せん断剛性率	μ	[N/m^2]	3. 20E+10	3. 20E+10	3. 20E+10

■微視的パラメータ(揺れの強さに関わる詳細なパラメーター)

伏在活断層					西札幌	月寒	野幌
		想定断層アスペリティ数			1	1	1
	総ア	総アスペリティ面積	Sa	[km^2]	24	120	168
	スペ	総アスペリティモーメント	MOa	[Nm]	7. 29E+17	7. 48E+18	1. 32E+19
	リ	総アスペリティ平均すべり量	Da	[cm]	94.96	194. 69	244. 75
	テイ	静的応力降下量	Δσa	[MPa]	24. 68	14.96	15. 07
微視		短周期レベル	Α	[Nm/s^2]	3. 24E+19	2. 90E+19	3. 28E+19
的パ	ア	アスペリティ面積	Sa	[km^2]	24	120	168
ラ	スペ	アスペリティモーメント	MOa	[Nm]	7. 29E+17	7. 48E+18	1. 32E+19
× ·	リ	アスペリティすべり量	Da	[cm]	94.96	194. 69	244. 75
9 	テイ	静的応力降下量	Δσa	[MPa]	24. 68	14. 96	15. 07
	1	短周期レベル	Α	[Nm/s^2]	3. 24E+19	2. 90E+19	3. 28E+19
		背景領域面積	Sb	[km^2]	232	440	536
背 景	背景	背景領域モーメント	MOb	[Nm]	3. 16E+18	9. 97E+18	1. 44E+19
	領域	背景領域すべり量	Db	[cm]	42. 57	70. 8	84. 02
		実行応力	Δσb	[MPa]	4. 15	2. 72	3. 29

■伏在活断層で共通のパラメーター(地盤固有のパラメーター)

	破壊伝播速度	[m/s]	2448
その	高周波遮断周波数	[Hz]	6
他	地震基盤速度	[m/s]	3400
	地震基盤密度	[t/m^3]	2. 77

巻末④1.2 地盤構造モデル~深部地盤モデルの検証

【現行想定による深部地盤モデルの比較】

既往モデルの地質区分とS波速度構造の比較

地質	石狩平野北部 モデル(札幌市)	石狩低地東縁 モデル(防災科研)	十勝沖モデル (防災科研)	石狩・勇払平野地域 モデル(産総研)	
完新統~ 中部更新統	183m/s	480m/s	480m/s	400m/s	500
下部更新統	669m/s	40011/ 5	40011/ 5	722m/s	1000
鮮新統	1081m/s, 1516m/s	700m/s	700m/s	1196m/s	
上部中新統	2073m/s	1100m/s	1100m/s	1725m/s	·))) () () () () () () () () () () ()
中部中新統	2622m/s	1700m/s	1700m/s	2350m/s	. 账
グリーンタフ	3136m/s			3131m/s	2000
古第三系		2200m/s	2200m/s	2000m/s	
上部白亜系 衝上断層帯				2700m/s	· 2500 · H16札幌市
基盤岩類		3200m/s (3300~3500m/s)	3200m/s	3400m/s	地下構造調査 産総研モデル
コンラッド面 ~モホ面		(3600 ~ 3800m/s)		3750m/s	3000
モホ面~ 深度100km		(4200 - 4500 - (-)		4300m/s	·
深度100km以深		(4200~4300m/s)		4500m/s	
•地質区分	トごとのS波	速度一覧者	長での比較	では、札	· ¦ ·札幌市地下構造
幌市地下	構造調査結	は果と産総研	用モデルの	整合性が	イ探査結果におし
高い					の整合性は高い

7

微動アレー探査観測点

 ・採用深部地盤モデルは札幌市地下構造による、微動アレイ探査結果の再現 性が高い

巻末④1.2 地盤構造モデル~現行想定による深部地盤モデル検証

【深部地盤モデルの比較のまとめ】 ・選定モデル(産総研モデル)は札幌市地下 構造調査結果との整合性が高く、震源モデ ルまでのシミュレーション領域をカバーして いる唯一のモデル

産総研モデルのS波速度 (図はそれぞれ, GL-1500mにおける水平断面, 北緯43度における東西断面, 東経141.5度における南北断面を示す)

既往モデルの範囲の比較

既往モデルの総合的な比較

	石狩平野北部 モデル (札幌市)	石狩低地東縁 モデル(防災科研)	十勝沖モデル (防災科研)	石狩・勇払平野 地域モデル(産総研)
石狩平野北部地下 構造調査の結果		_	_	反映させている
各層の物性値の設定 のしかた	場所によりゆるやか に変化	一定	一定	一定
微動探査結果(位相速 度)との整合性	0	×	×	0
シミュレーション領域を カバーしているか	× (札幌市のみ)	Δ~0	0	0
報告書作成年月	平成17年3月	平成17年12月	平成16年12月	平成17年12月

9

巻末⑤1.2 地盤構造モデル~胆振東部地震の揺れ方との照合 【胆振東部地震の地震動の特徴】

石狩平野の地震動:2003年十勝沖地震との比較

2018胆振東部:周期1秒以下は2003年十勝沖地震より強い

平成30年北海道胆振東部地震による地盤災害調査団 速報会(地盤工学会、2018.10.2)、「2018年北海道胆振東部地震の概要 震源と地震動」(吉見雅行)より引用

巻末⑤1.2 地盤構造モデル~胆振東部地震の揺れ方との照合

【比較参考:観測波形~中央区•胆振東部地震】

胆振東部地震の観測記録(札幌市・中央区南4)

・短周期(高周波)の揺れが卓越

巻末⑤1.2 地盤構造モデル~胆振東部地震の揺れ方との照合

【比較参考:観測波形~中央区・2003十勝沖】

2003十勝沖地震の観測記録(気象庁・中央区北2)

長周期の揺れが特徴的

巻末⑥1.3 強震動計算~計算手法

【深部地盤の計算手法(ハイブリッド合成法)の補足説明】

ハイブリッド合成法は、長周期を理論的手法(差分法)、短周期を統計的グリーン関数法(半経験的手法)で算出して、お互いの手法が得意とする計算領域をマッチングフィルターで組み合わせることにより、広帯域の波形に適応した評価が可能

巻末⑦1.4 液状化予測の手法等~液状化に関わる地下水の考え方

■現行想定の地下水位設定手法

・継続的な観測(48観測井)での最高水位と、ボーリングの初期水位を比較し、全般的には観 測最高水位とボーリングの初期水位が近似しているため、市域全体にわたり多くのデータを有 するボーリングの初期水位を最高水位として使用

・ボーリングによる初期水位を元に地下水位等高線図を作成

・地盤構造モデルに反映

→最高の水位を考慮して設定

巻末⑧ 1.4 液状化予測の手法等~液状化に関わる地下水の考え方

↑地下水位の経年的な変化の例(山口観測所) 僅かに上昇の傾向

←地下水位の年周期の変動状況(山口観測所) 融雪期に年最高の水位となる傾向

(北海道立総合研究機構 環境・地質研究本部 地質研究所発行の「地下水位地盤沈下観測記録(札幌北部~石狩地方)」の観測記録(XXVII~XXXVII(2006~2016)より日平均データを引用し、気象庁 札幌気象台による気象データと併せてグラフ化)