札幌市における PM2.5 地域特性と発生源解析について

吉田 勤 柴田 学 山口弘行 三觜 雄

要 旨

2015 年度から 2017 年度において、札幌市で採取された微小粒子状物質(PM2.5)の成分分析結果に ついて、その特徴や発生源について考察を行った。当市の特徴として、質量濃度は全国平均と比較し て、2~3 µg/m³程度低値であったが、有機炭素(OC)、元素状炭素(EC)ともに高値であり、質量濃 度に占める OC、EC の割合が高い傾向にあった。

質量濃度が2日以上連続して15 μg/m³を超える場合を高濃度事例と定義し、9つの事例について、 その高濃度要因の検討を行った。レボグルコサンが高濃度になる場合は、バイオマス燃焼が要因であ ると判断できるが、硫酸アンモニウムや 0C、EC が高濃度となる場合、発生源の特定は困難な場合が 多かった。

レセプターモデルである PMF 法を用いて発生源解析を行ったところ、7 つの因子に分けることが妥 当であると判断され、その含まれる成分割合等から、海塩粒子、石炭燃焼、道路交通系、土壌粒子(黄 砂)、バイオマス燃焼、半揮発性粒子、重油燃焼の7 因子とした。土壌粒子は春季に高く、重油燃焼 は夏季に高く、バイオマス燃焼は秋季に高く、半揮発性粒子は冬季に高い傾向がみられた。

高濃度事例について、推定した高濃度要因と PMF の解析結果と比較を行った。それぞれの結果に大きな矛盾は認められず、PMF の結果の方がより詳細な発生原因の推定を行うことができた。ただし、 今回の計算結果は改善の余地があり、成分の分配や寄与割合は参考として評価すべきである。

1. 緒 言

微小粒子状物質 (PM_{2.5}) は、大気中に浮遊している 2.5μm以下の小さな粒子のことであり、非常に小さい ことから、肺の奥深くまで入りやすく、呼吸器系への 影響に加え、循環器系への影響が心配されている。

PM2.5の発生源は、人為起源では、ボイラー等のばい 煙を発生する施設、自動車、船舶、航空機等があり、 自然起源では、黄砂などの土壌や、海塩粒子、火山等 に由来する成分がある。また、その生成機構について は、燃焼等によって直接排出される一次粒子と、硫黄 酸化物(SOx)、窒素酸化物(NOx)、揮発性有機化合物 (VOC)等のガス状成分が、化学反応により粒子化す る二次粒子がある。

PM2.5汚染を低減する対策を検討するためには、単に

質量濃度を測定するだけでは不十分であり、その化学 組成についても詳細に検討していく必要がある。環境 省では、PM2.5の生成機構や発生源寄与割合を推計し、 効果的な削減対策を講ずるため、大気中の PM2.5 につ いて、平成 21 年 9 月に環境基準を定め、大気汚染防 止法に基づき、各地方自治体での質量濃度測定及び成 分分析の実施を義務付けた。札幌市では、平成 25 年 3 月に、北1条局1か所に成分分析用サンプラーを設 置し、成分分析を開始した。

今回、平成27年度から平成29年度のまでの3か年 の成分分析結果の傾向を取りまとめるとともに、これ らのデータに対してPositive matrix factorization (PMF)解析を適用し、発生源の推定及びその寄与割 合の算出を行ったので、その結果を報告する。

2. 方 法

2-1 試料

採取期間は各年度4季節において、2週間連続で 実施した。基本的に、環境省が定めたコア期間を必 ず含むように行った。試料採取は2025i(Thermo SCIENTIFIC社製)を用いた。

2-2 成分及び分析

PM_{2.5} 質量濃度は、FPM377-2(東亜ディーケーケー製)によって測定される質量濃度を用いた。測定 項目及び分析法は表1のとおりである。

項目	成分	分析法
質量濃度	_	自動測定器
イオン	C1 ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ ,	水抽出-イオ
成分	Na ⁺ 、NH ₄ ⁺ 、 K ⁺ 、Mg ²⁺ 、Ca ²⁺ 、	ンクロマト
	シュウ酸イオン	グラフ法
無機元素	Na、 Al、 K、 Ca、 Sc、	酸分解-ICP-
成分	Ti、 V、 Cr、 Mn、 Fe、	MS 法
	Co、 Ni、 Cu、 Zn、 As、	
	Se、 Rb、 Mo、 Sb、 Cs、	
	Ba、 La、 Ce、 Sm、 Hf、	
	W、 Ta、 Th、 Pb、 Cd	
炭素成分	OC、EC	熱分離・光学
		補正法
その他	レボグルコサン	溶媒抽出-誘
		導体化-
		GC/MS 法

表1 測定項目及び分析法

詳細な分析法については、大気中微小粒子状物 質(PM_{2.5})成分測定マニュアル¹⁾に従って実施した。

3. 結果と考察

3-1 代表的な成分の挙動

各年度の代表的な成分の年平均値と、2017年度 の全国平均値を図1に示した。

さらに、代表的な成分の、当市の3か年の平均 値と全国平均値の比較を図2に示した。

PM_{2.5}の質量濃度は、3か年の平均値で2017年度 の全国平均よりもおよそ4.6 µg/m³低かった。

代表的な成分に着目すると、硝酸イオンについ ては、2017 年度の全国平均と大きな差がみられな かった。一方、硫酸イオン、アンモニアイオン及び 無機元素は札幌市の方が低い傾向にあり、0C と EC は札幌市の方が高い傾向にあった。したがって、質 量濃度に占める 0C、EC の割合は、全国平均に比べ て高い値であった。

3-2 高濃度事例

PM_{2.5}の質量濃度日平均が15 μg/m³を超過し、かつ、2日以上連続した事例を高濃度事例と定義した。

また、高濃度の前後の日において、15 μg/m³を 超過している日がある場合は、同一の事例として 扱った。この定義により、定められた高濃度事例の 一覧を表2に示す。

通し番号 最高質量濃度 日付 1 $2015/5/6 \sim 5/7$ 29.6 2 2015/7/27~8/4 22.4 3 2015/10/26~11/5 30.6 2016/5/8~5/9 4 31.5 2016/5/17~5/20 5 17.4 2016/11/3~11/4 24.1 6 7 2017/5/20~5/22 17.6 2017/10/30~11/7 8 40.0 $9 \mid 2018/1/17 \sim 1/18$ 18.1

表2 高濃度事例の一覧

(1) 2015/5/6~5/7の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図3に示す。高濃度であった5/6~5/7は、無 機元素合計の値が他の日より高い傾向にあった。

そこで、5/6~5/8の無機元素の内訳を図4に示

A1、Fe、Ca、K等が多く含まれており、土壌粒子の影響を受けていると考えられた。この期間、札幌

に設置してある Lidar²⁾は停止しており、裏付けは 得られなかったものの、春季において、土壌粒子の 影響が大きい場合は、黄砂の影響と考えられる。

(2) 2015/7/27~8/4の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図5に示す。イオン成分の合計が占める割合 が高い傾向にあった。

イオン成分の内訳をみてみると(図 6)、硫酸イ オンとアンモニウムイオンの割合が圧倒的に多か った。NiとVの変動をみてみると、イオン成分の 変動と一致している傾向にあり、重油燃焼の影響 を受けていることが示唆された。

(3) 2015/10/26~11/5の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図7に示す。0Cの割合が高い傾向にあった。

図7 高濃度事例付近の成分ごとの合計

個別の成分をみてみると、レボグルコサンとカ リウムイオンの変動と質量濃度の変動の傾向が一 致しており、バイオマス燃焼が高濃度の要因であ ると推測された。

(4) 2016/5/8~5/9の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図9に示す。0CとECの割合が高い傾向にあ った。

個別の成分をみてみると、レボグルコサンとカ リウムイオンの変動と質量濃度の変動の傾向が一

致しており、バイオマス燃焼が高濃度の要因であ ると推測された。

(5) 2016/5/17~5/20の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図11に示す。0CとECの割合が高い傾向にあ った。

指標性の高い無機元素の変動をみてみたが、質 量濃度との変動の傾向があまり一致せず、OC、ECの 発生源が何に由来するのか明確にならなかった。 複数の発生源の影響を受けている可能性がある。

(6) 2016/11/3~11/4の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図13に示す。11/3~4は、イオン濃度の合計 の割合が高い傾向にあった。

そこで、イオン成分の内訳(図14)をみてみる と、硫酸イオン、硝酸イオン及びアンモニウムイオ ンの占める割合が上昇していることが確認された。 高濃度の要因は、硫酸アンモニウム及び硝酸アン モニウムであった。指標性の高い無機元素の変動 をみてみたが、硫酸イオンや硝酸イオンとの強い 相関関係は見られなかった。

(7) 2017/5/20~5/22の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図 15に示す。5/20、21、23は、イオン濃度の 合計の割合が高い傾向にあった。

イオン成分の内訳(図 16)をみてみると、この ときの高濃度の主たる要因は、硫酸イオンとアン モニウムイオンであった。指標性の高い無機元素 の変動をみてみたが、硫酸イオンと強い相関関係 は見られなかった。

ただし、5/22 はイオン濃度が低く、0C 濃度が高 いことから、この日だけは別の要因の影響を受け た可能性がある。

(8) 2017/11/5~11/7の事例

イオン合計、無機元素合計、0C及びECの日別濃 度を図17に示す。質量濃度との変動の傾向がすべ て一致している成分はないものの、0Cの影響が高 い傾向にあった。

イオン成分の内訳(図 18)をみてみると、質量 濃度の変動に大きく影響しているのは、硫酸イオ ン、硝酸イオン及びアンモニウムイオンであり、 11/2をピークにカリウムイオンとシュウ酸イオン が上昇している傾向がみられた。

次に一部の無機元素及びレボグルコサンについ てみてみると(図 19)、レボグルコサンは 11/2 付 近にピークがあり、無機元素は、11/2 及び 11/7 の どちらにもピークがみられるが、11/7 に濃度が大 きく上昇していた。

したがって、全体的に硫酸イオンと硝酸イオン が上昇しており、一部の無機元素の負荷があるこ とから、石炭燃焼や重油燃焼の影響を受けていた と考えられるが、その影響は11/7に最大となって いた。一方、11/2にはレボグルコサン、カリウム イオン及びシュウ酸イオンのピークがみられ、こ の日はバイオマス燃焼の影響を強く受けていたこ とが示唆された。

(9) 2018/1/17~1/18の事例

イオン合計、無機元素合計、0C及びECの日別濃度 を図20に示す。イオン濃度の合計の割合が高い傾向にあった。

そこで、イオン成分の内訳(図 21)をみてみる と、硫酸イオン、硝酸イオン及びアンモニウムイオ ンの割合が高い傾向にあった。指標性の高い無機 元素の変動をみてみたが、硫酸イオンと強い相関 関係はみられなかった。

3-3 PMF での解析

今回得られた成分分析データについて、Positivematrix factorization (PMF) 解析を適用し、発生源の推定及びその寄与割合の算出を行った。

PMF 法は Paatero と Tapper (1994)³⁾ により提 案された多変量解析モデルであり、因子別寄与濃 度の推定に用いられる。PMF 法は、自治体やより広 域な領域における発生源の推定において、利用さ れており、大きな成果を上げている方法である。

解析ソフトは EPA-PMF5.0⁵⁾を使用した。解析に 用いた成分は、質量濃度、C1⁻、N0₃⁻、S0₄²⁻、Na、K⁺、 Ca²⁺、Mg²⁺、NH₄⁺、A1、V、Cr、Mn、Fe、Ni、Cu、Zn、 As、Sb、Pb、OC、EC、レボグルコサンの 23 成分で あり、196 検体について解析を行った。Mg²⁺、Cr、 Ni、Cu、Zn、Sb については、不確かさを設定の 3 倍にして解析を行った。計算回数は100回とした。

因子数の決定は、Bootstrap の Mapping で Unmapped が現れないことと、各因子の配分が 90% 以上あることを基本的な条件とした。また、切り分 けられた因子について、大気中での存在が説明で きうることを条件とした。例えば、単一の成分の配 分割合が、きわめて高い因子が切り分けられた場 合、大気中での発生源が説明できないときは、因子 数を変えて再解析することとした。

解析については様々な条件を検討したところ、 因子数を7、Extra modeling uncertaintyを15%と した場合、因子1の配分が89%であり、90%を下回 ったものの、これを最適解とした。その計算結果の 妥当性を表 3~5 に示す。

+ -	
エク	
12.0	

					KS Test	KS Test
Species	Intercept	Slope	SE	r^2	Stat	P Value
PM2.5	0.90729	0.89041	1.74387	0.89933	0.09449	0.06374
Cl-	0.01695	0.83551	0.04996	0.89409	0.06517	0.3853
NO ₃	0.03173	0.91178	0.19055	0.92674	0.09915	0.04499
SO4 ²⁻	-0.03694	1.00137	0.49319	0.87948	0.04317	0.86459
Na	-0.01302	1.12179	0.02655	0.94522	0.06403	0.40728
K^+	0.0164	0.71872	0.04906	0.79105	0.08553	0.11875
Ca ²⁺	-0.00219	0.97465	0.02358	0.96972	0.07353	0.24772
${\rm Mg}^{2+}$	0.00101	0.88709	0.00384	0.86972	0.07477	0.23072
$\mathrm{NH4}^+$	0.01779	0.95864	0.19516	0.9128	0.05377	0.63228
Al	0.01493	0.68986	0.02732	0.99141	0.09597	0.05717
V	0.00012	0.83614	0.00044	0.93058	0.14883	0.00039
Cr	0.00006	0.80601	0.00023	0.8099	0.1408	0.00095
Mn	0.00048	0.82834	0.00228	0.85176	0.12173	0.00656
Fe	0.00036	0.97734	0.01474	0.99609	0.0899	0.08836
Ni	0.00022	0.67881	0.00036	0.6862	0.16614	0.00005
Cu	0.00079	0.49512	0.00067	0.56019	0.08344	0.13606
Zn	0.00603	0.54401	0.00614	0.6026	0.14831	0.00041
As	0.00006	0.8478	0.00015	0.91896	0.0982	0.04837
Sb	0.00017	0.54213	0.00016	0.50829	0.12181	0.00651
Pb	0.00025	0.83677	0.00052	0.91164	0.05617	0.57639
OC	0.83981	0.67914	0.87071	0.81568	0.08911	0.09331
EC	0.26633	0.80685	0.29788	0.83444	0.04716	0.78392
levo	-0.00184	1.02249	0.01571	0.98313	0.17641	0.00001

表 4 Bootstrap factor と Base factor のマッピング

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Unmapped
Factor1	89	9	2	0	0	0	0	0
Factor2	0	100	0	0	0	0	0	0
Factor3	0	3	97	0	0	0	0	0
Factor4	0	5	2	93	0	0	0	0
Factor5	0	0	0	0	100	0	0	0
Factor6	0	1	0	0	0	99	0	0
Factor7	0	0	0	0	0	0	100	0

表 5	Base run の値が Bootstrap	runの25%~75%タイル値に収まって	いるかの判定
10 1			

Species	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7
PM _{2.5}	Yes						
Cl-	Yes						
NO ₃ -	Yes						
SO4 ²⁻	Yes						
Na	Yes						
\mathbf{K}^+	Yes	Yes	Yes	Yes	No	Yes	Yes
Ca^{2+}	Yes						
Mg^{2+}	Yes						
$\mathrm{NH_{4}^{+}}$	Yes						
Al	Yes						
V	Yes	No	Yes	Yes	Yes	Yes	Yes
Cr	Yes	No	Yes	Yes	Yes	Yes	Yes
Mn	Yes	Yes	Yes	Yes	Yes	Yes	No
Fe	Yes						
Ni	Yes	No	Yes	Yes	Yes	Yes	Yes
Cu	Yes						
Zn	Yes	Yes	Yes	Yes	No	Yes	Yes
As	Yes						
Sb	Yes	No	Yes	Yes	No	Yes	Yes
Pb	Yes	No	Yes	Yes	Yes	Yes	Yes
OC	Yes						
EC	Yes	Yes	No	Yes	Yes	Yes	Yes
levo	No	Yes	Yes	Yes	Yes	Yes	Yes

次に、それぞれの因子の成分濃度とその割合を 図 22 に示す。図 22 の右側をみると、すべての因 子に炭素成分が割り当てられている。因子 1、2、 6 及び 7 は、硫酸アンモニウムを含んでいる。

因子1は、無機元素としてNa、Cl⁻、Mg²⁺の負荷 があり、海塩粒子と硫酸アンモニウムの混合した 因子と推測した⁴⁾。

因子 2 は、無機元素として K⁺を少量含んでおり、 また、As と Pb の寄与割合も高いことから、石炭燃 焼と推測した ²⁾。なお、硝酸イオンを含んでおり、 Sb、Zn、Cu、Cr の寄与割合も高いことから、道路 交通系の影響も受けていると考えられた。

因子 6 は、硝酸イオン、塩化物イオン、アンモ ニウムイオンの含有量が多いことから、半揮発性 粒子と硫酸アンモニウムの混合因子と推測した⁴⁾。 因子 7 は、V と Ni の寄与割合が高く、重油燃焼 と推測した⁴⁾。

非硫酸系として、因子 3 は、硝酸イオンを含ん でおり、Sb、Zn、Cu、Mn の寄与割合が高いことか ら、道路交通系と推測した⁴⁾。

因子4は、無機元素としてFe、A1、Ca²⁺を多く含 んでおり、土壌粒子と0Cが混合した因子と推測し た⁴⁾。なお、前の項で指摘したとおり、この因子は 春季の特定の期間のみ高くなる傾向にあり、黄砂 であることが示唆された。 因子 5 は、レボグルコサンと K⁺の寄与割合が高 く、バイオマス燃焼であると推測した。

図 22 それぞれの因子の成分濃度とその割合(左側は縦軸が対数表示となっている)

図 23 0C、EC の各因子における割合

図 23 をみると、炭素成分のおよそ半分が因子 3

に振り分けられているが、因子 3 は不確かさの設 定値を 3 倍で計算している元素が多く、図 22 をみ ると Mn、Cu、Zn 及び Sb の割り当てられている割 合が高いが、表 3 をみると、それらの成分は Mn を 除きモデルの再現性が悪く、炭素成分の切り分け には改善の余地がある。

次に因子の日別濃度、各季節平均、季節の平均を 図 24~27 に示す。図 26 をみると、海塩粒子と硫 酸アンモニウムの混合因子は、夏季に低くなる傾 向がみられた。バイオマス燃焼は秋季にのみ高く なる傾向がみられた。重油燃焼は、春季にやや上昇 し、夏季に最も高くなる傾向がみられた。黄砂と 0C の混合因子は、春季にのみ高くなる傾向がみられ た。半揮発性粒子と硫酸アンモニウムの混合因子 は、夏季にはほとんど見られず、冬季に最も高くな る傾向がみられた。道路交通系と石炭燃焼は季節 変動があまりみられなかった。

3-4 高濃度事例とそのときの因子寄与割合について

3-2 の項で、今回の対象期間中に起きた高濃度 事例について、その原因をいくつかの成分の変動 等を参考に推測を行ったが、今回 PMF 解析した結 果を用いて、それぞれの高濃度事例において、主た る要因と考えられる因子を調べ、3-2 で推測した結 果との比較を行った。その結果を表6に示す。

事例 1~4 については、よく一致していた。事例 3、4 については、PMF ではさらに道路交通系の因 子も切り分けられていた。

PMFの解析において、バイオマス燃焼と道路交通 系は、バイオマス燃焼の指標性の高いレボグルコ サンを加えないと同じ因子になった。したがって、 この両因子は、大気中での変動パターンが似てい る傾向にあることが示唆される。当市においてバ イオマス燃焼が高くなる場合は、NASA が公開して いるインタラクティブマップ「Worldview」⁶にお いて、Fire spotから流れ出てくる煙上の映像が毎 回確認されており、大陸からの移流の影響である と考えられる。このバイオマス燃焼と道路交通系 が似た傾向にあるということは、道路交通系は、主 としてローカルな発生源を示していないのかもし れない。

事例5については、0C、ECの発生源を特定でき なかったが、PMF解析では、道路交通系と石炭燃焼 が高濃度因子であった。ローカルの汚染だけで質 量濃度がここまで上昇するとは考えにくく、道路 交通系は移流による汚染物質であることが示唆さ れる。

事例 3~5 から、道路交通系は大陸に主たる発生 源があることが示唆されるが、ローカル汚染の影 響も含んでいる可能性がある。

事例 7 については、硫酸アンモニウムが質量濃 度への寄与が大きいことは分かったものの、その 発生源までは分からなかったが、PMF 解析ではそれ ぞれ化石燃料の燃焼によるものであることが推測 された。

事例 6、9 については、硫酸アンモニウムのほか に硝酸アンモニウムの上昇も見られたが、冬季に おける硝酸アンモニウムの上昇は、PMF 解析では半 揮発性粒子の影響であるとされた。半揮発性粒子 は冬季に高くなる傾向にあり、冬季において、硝酸 イオンが高い場合は、この影響を受けていること が示唆される。

ない 正足しての同辰皮女凶の比較につい	6 推定される高濃度要因の比較につ	いて
---------------------	-------------------	----

通し番号	日付	推定原因	PMF 高因子
1	2015/5/6~5/7	黄砂	黄砂+OC
2	2015/7/27~8/4	重油燃焼	重油燃焼
3	2015/10/26~11/5	バイオマス燃焼	バイオマス燃焼、道路交通系
4	2016/5/8~5/9	バイオマス燃焼	バイオマス燃焼、道路交通系
5	2016/5/17~5/20	OC、EC	道路交通系、石炭燃焼
6	2016/11/3~11/4	硫酸アンモニウム、硝酸アンモニウム	バイオマス燃焼、半揮発性
7	2017/5/20~5/22	硫酸アンモニウム、OC	石炭燃焼、重油燃焼
8	2017/10/30~11/7	バイオマス燃焼、重油燃焼、石炭燃焼	バイオマス燃焼、石炭燃焼
9	2018/1/17~1/18	硫酸アンモニウム、硝酸アンモニウム	半揮発性、石炭燃焼

4. 結 語

2015 年度から 2017 年度に採取された PM2.5の成 分分析結果について、その特徴や発生源について 考察を行った。当市の特徴として、質量濃度に占め る OC、EC の割合が高い傾向にあり、2017 年度で は、全国平均がそれぞれ 18%、7%であるのに対し、 当市は 32%、12%であった。

PMF 解析では、道路交通系の因子に高い割合で炭 素成分が割り当てられていたが、この因子に多く 配分されている無機元素は、不確かさの設定値を3 倍にして計算しているものが多く、モデルの再現 性も悪いため、因子の切り分けそのものが、うまく いっていない可能性がある。

高濃度事例について、その高濃度要因を探った ところ、高濃度と定義された事例について、PMF 解 析から切り分けられた因子はいずれも大陸由来と 考えられ、これらの期間の後方流跡線を作成する と、いずれも大陸由来であったことから、当市の高 濃度事例は、大陸から大きな影響を受けていると 考えられる。

高濃度事例の発生源推定について、硫酸アンモ ニウムや OC、EC が高濃度の場合、複数の発生源の 影響が考えられるので、指標性の高い無機元素濃 度から発生源の推定を行うことは困難であること が多かった。このような場合、PMF 解析ではより詳 細な推測が可能であり、PMF 方法の有用性が示され た。

5. 文 献

- 1) 大気中微小粒子状物質 (PM2.5) 成分測定マニュ アル<u>https://www.env.go.jp/air/osen/pm/ca/</u> manual.html
- 東アジアライダーネットワークデータセンター ホームページ:http://www-lidar.nies.go.jp/
- Paatero, Pentti, and Unto Tapper. "Positi ve matrix factorization: A non - negative factor model with optimal utilization of error estimates of data values." Environm

etrics 5(2), 111-126, 1994

- 4) PM 2.5の短期的/長期的環境基準超過をもたらす 汚染機構の解明Ⅱ型共同研究第5期報告
- 5) United States Environmental Protection Ag ency ホームページ<u>https://www.epa.gov/air-</u> research/positive-matrix-factorization-mo <u>del-environmental-data-analyses</u>
- 6) Worldview ホームページ:<u>https://worldview.</u> <u>earthdata.nasa.gov/</u>